The compound you've described is **(2S,3S)-N-(1-((2S,3S)-5-((2R)-1-hydroxypropan-2-yl)-3-methyl-6-oxo-10-((propan-2-ylamino)methylideneamino)-3,4-dihydro-2H-1,5-benzoxazocin-2-yl)methyl)-1-methyl-3-phenylurea**.
This complex molecule is an **analog of the natural product FR901463**, a potent and selective inhibitor of the **enzyme HDAC6**.
**HDAC6** (Histone Deacetylase 6) is a key enzyme involved in regulating various cellular processes, including:
* **Protein degradation:** HDAC6 plays a crucial role in the ubiquitin-proteasome system, a pathway responsible for degrading misfolded and damaged proteins.
* **Cellular stress response:** HDAC6 helps cells cope with stress by deacetylating proteins involved in stress signaling pathways.
* **Microtubule dynamics:** HDAC6 regulates the stability and function of microtubules, essential components of the cytoskeleton.
* **Inflammation:** HDAC6 is involved in the regulation of inflammatory responses by modulating the activity of inflammatory mediators.
**The importance of this research compound lies in its potential therapeutic applications:**
* **Cancer treatment:** HDAC6 inhibitors like this analog have shown promise in treating various cancers, including multiple myeloma, leukemia, and breast cancer. They work by inducing cell cycle arrest and apoptosis in cancer cells.
* **Neurodegenerative diseases:** HDAC6 is implicated in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease. Inhibition of HDAC6 may offer a potential therapeutic strategy for these conditions.
* **Inflammation:** HDAC6 inhibitors may be beneficial in treating inflammatory conditions like rheumatoid arthritis and inflammatory bowel disease by modulating the inflammatory response.
**Further research on this analog and other HDAC6 inhibitors is crucial to understand their:**
* **Mechanisms of action:** How exactly do these compounds inhibit HDAC6 and what are the downstream effects on cellular processes?
* **Safety and efficacy:** Are these compounds safe and effective for long-term use in humans? What are the potential side effects?
* **Therapeutic potential:** What are the optimal doses and treatment regimens for different diseases? Can they be combined with other therapies for better outcomes?
**Overall, this research compound represents a promising lead for developing novel therapeutic agents targeting HDAC6, with potential applications in a wide range of diseases.**
ID Source | ID |
---|---|
PubMed CID | 44202778 |
CHEMBL ID | 1697894 |
CHEBI ID | 108786 |
Synonym |
---|
CHEBI:108786 |
MLS002474139 |
smr001398300 |
BRD-K01100412-001-02-0 |
HMS2199B17 |
CHEMBL1697894 |
Q27187750 |
1-[[(2s,3s)-5-[(2r)-1-hydroxypropan-2-yl]-3-methyl-6-oxo-10-[[oxo-(propan-2-ylamino)methyl]amino]-3,4-dihydro-2h-1,5-benzoxazocin-2-yl]methyl]-1-methyl-3-phenylurea |
Class | Description |
---|---|
ureas | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
ATAD5 protein, partial | Homo sapiens (human) | Potency | 32.6294 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 1.5849 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |